EtlAliOaidActivitionDaily.scala 6.11 KB
Newer Older
wang-jinfeng committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
package mobvista.dmp.datasource.taobao

import java.net.URI

import mobvista.dmp.common.CommonSparkJob
import org.apache.commons.cli.Options
import org.apache.hadoop.fs.{FileSystem, Path}
import org.apache.spark.sql.{DataFrame, SaveMode, SparkSession}
import org.apache.spark.storage.StorageLevel


class EtlAliOaidActivitionDaily extends CommonSparkJob {
  override protected def buildOptions(): Options = {
    val options = new Options
    options.addOption("output", true, "[must] output")
    options.addOption("outputdaily", true, "[must] outputdaily")
    options.addOption("coalesce", true, "[must] coalesce")
    options.addOption("today", true, "[must] today")
    options.addOption("yesterday", true, "[must] yesterday")
    options.addOption("dt_dash_today", true, "[must] dt_dash_today")
    options.addOption("last_req_day", true, "[must] last_req_day")
    options.addOption("dt_dash_rec14day", true, "[must] dt_dash_rec14day")
    options.addOption("request_count_result", true, "[must] request_count_result")
    options
  }

  override protected def run(args: Array[String]): Int = {
    val commandLine = commParser.parse(options, args)
    if (!checkMustOption(commandLine)) {
      printUsage(options)
      return -1
    } else printOptions(commandLine)

    val output = commandLine.getOptionValue("output")
    val outputdaily = commandLine.getOptionValue("outputdaily")
    val coalesce = commandLine.getOptionValue("coalesce")
    val today = commandLine.getOptionValue("today")
    val dt_dash_today = commandLine.getOptionValue("dt_dash_today")
    val last_req_day = commandLine.getOptionValue("last_req_day")
    val dt_dash_rec14day = commandLine.getOptionValue("dt_dash_rec14day")
    val yesterday = commandLine.getOptionValue("yesterday")
    val request_count_result = commandLine.getOptionValue("request_count_result")


    val spark = SparkSession.builder()
      .appName("EtlAliOaidActivitionDaily")
      .config("spark.rdd.compress", "true")
      .config("spark.io.compression.codec", "snappy")
      .config("spark.sql.orc.filterPushdown", "true")
      .config("spark.sql.warehouse.dir", "s3://mob-emr-test/spark-warehouse")
      .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
      .enableHiveSupport()
      .getOrCreate()

    FileSystem.get(new URI(s"s3://mob-emr-test"), spark.sparkContext.hadoopConfiguration).delete(new Path(output), true)
    FileSystem.get(new URI(s"s3://mob-emr-test"), spark.sparkContext.hadoopConfiguration).delete(new Path(outputdaily), true)
    FileSystem.get(new URI(s"s3://mob-emr-test"), spark.sparkContext.hadoopConfiguration).delete(new Path(request_count_result), true)

    try {
      val sql1=
        s"""
           |select XX.device_id_md5,XX.device_id,XX.device_type
           |FROM (select X.device_id_md5,X.device_id,X.device_type,
           |row_number() over(partition by X.device_id_md5 order by X.device_type asc) rk
           |from ( select device_id,device_type,
           |case when device_type = 'oaid' then MD5(device_id) when device_type = 'oaidmd5' then device_id end as device_id_md5
           |from dwh.ods_dmp_user_info where dt ='${today}'
           | and device_type in ('oaid','oaidmd5')
           | and last_req_day >='${last_req_day}'
           | and  upper(country) = 'CN' ) X ) XX
           | WHERE XX.rk= 1
        """.stripMargin

      val dfCache: DataFrame = spark.sql(sql1).persist(StorageLevel.MEMORY_AND_DISK_SER)
      dfCache.createOrReplaceTempView("ods_user_info_daily")
      val sql2="select count(distinct device_id_md5) from ods_user_info_daily"
      spark.sql(sql2).rdd.map(_.mkString("==")).saveAsTextFile(request_count_result)

      val dt_14days_ago: String = dt_dash_rec14day.replace("-", "")
      //当天设备 - 最近14天设备 = 要上传oss设备
      //      9f89c84a559f573636a47ff8daed0d33 是 "00000000-0000-0000-0000-000000000000" 的md5值,过滤掉该设备
      val sql3 =
        s"""
           |select t1.device_id_md5
           |from  ods_user_info_daily t1
           |left join (
           |  select dev_id device_id_md5
           |    from dwh.ali_oaid_user_activation_daily where dt >='${dt_14days_ago}' and dt<='${yesterday}'
           |) t2
           |on(t1.device_id_md5 = t2.device_id_md5)
           |where t2.device_id_md5 is null and  t1.device_id_md5!='9f89c84a559f573636a47ff8daed0d33'
           |group by t1.device_id_md5 limit 60000000
        """.stripMargin


      val dfCacheUpload: DataFrame = spark.sql(sql3).persist(StorageLevel.MEMORY_AND_DISK_SER)
      dfCacheUpload.createOrReplaceTempView("upload_data_daily")
      dfCacheUpload.rdd.map(_.mkString).repartition(8).saveAsTextFile(outputdaily)

      // 得到最近15天的设备,即当天设备与昨天分区最近14天的设备合并
      val sql4 =
        s"""
           |select t.device_id_md5,t.device_type,t.device_id, t.update_date
           |from (
           |  select t.device_id_md5,t.device_type,t.device_id,t.update_date,
           |    row_number() over(partition by t.device_id_md5 order by t.update_date desc) rk
           |  from (
           |    select device_id_md5,device_id,device_type, update_date
           |        from
           |      (select t1.device_id_md5,t1.device_id,t1.device_type, '${dt_dash_today}' as update_date
           |         from  ods_user_info_daily t1
           |         join upload_data_daily t2
           |        on(t1.device_id_md5 = t2.device_id_md5) ) tmp_today
           |    union all
           |    select device_id_md5,device_id,device_type, update_date
           |    from dwh.ali_oaid_user_activation_rec15days
           |    where dt='${yesterday}'  and update_date >= '${dt_dash_rec14day}'
           |  ) t
           |) t
           |where t.rk='1'
        """.stripMargin

      spark.sql(sql4).coalesce(coalesce.toInt)
        .write
        .mode(SaveMode.Overwrite)
        .option("orc.compress", "zlib")
        .option("mapreduce.fileoutputcommitter.marksuccessfuljobs", false)
        .orc(output)

    } finally {
      spark.stop()
    }
    0

  }
}


object EtlAliOaidActivitionDaily {
  def main(args: Array[String]): Unit = {
    new EtlAliOaidActivitionDaily().run(args)
  }
}