1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/bin/sh
source ../dmp_env.sh
date=$(date +"%Y-%m-%d" -d "$ScheduleTime")
LOG_TIME=$(date +%Y%m%d -d "-1 day $ScheduleTime")
yes_bef2_day=`date -d "$ScheduleTime 2 days ago" +%Y%m%d`
yes_bef1_day=`date -d "$ScheduleTime 1 days ago" +%Y%m%d`
yes_bef1_slack=`date -d "$ScheduleTime 1 days ago" +%Y/%m/%d`
yes_bef2_slack=`date -d "$ScheduleTime 2 days ago" +%Y/%m/%d`
# while [[ true ]];
# do
# aws s3 ls "s3://mob-emr-test/dataplatform/datawarehourse/ga/${yes_bef2_day}/_SUCCESS"
# GA_IS_EXIST=$?
#
# if [[ ${GA_IS_EXIST} -eq 0 ]]
# then
# break
# fi
# sleep 300
# done
export AWS_ACCESS_KEY_ID=AKIAIBMYT3BZHBYDOMSQ
export AWS_SECRET_ACCESS_KEY=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
## 检查GA文件是否存在
while [[ true ]];
do
aws s3 ls "s3://mob-emr-test/dataplatform/datawarehourse/ga/${yes_bef2_day}/_SUCCESS"
GA_IS_EXIST=$?
if [[ ${GA_IS_EXIST} -eq 0 ]]
then
break
fi
sleep 300
done
#下载数据到本地
aws s3 sync "s3://mob-emr-test/dataplatform/datawarehourse/ga/${yes_bef2_day}" "./realtime/ga_add/${yes_bef2_day}"
#上传到hive仓库
hadoop dfs -rm -r s3://mob-emr-test/dataplatform/datawarehourse/real-time-query/ga_add/${yes_bef2_day}
hadoop dfs -mkdir -p s3://mob-emr-test/dataplatform/datawarehourse/real-time-query/ga_add/${yes_bef2_day}
hadoop dfs -put -p ./realtime/ga_add/${yes_bef2_day} s3://mob-emr-test/dataplatform/datawarehourse/real-time-query/ga_add/
rm -rf ./realtime/ga_add/${yes_bef2_day}
echo "[ga data prepare End!]"
unset AWS_ACCESS_KEY_ID
unset AWS_SECRET_ACCESS_KEY
echo "[ga data prepare End!]"
#wait for table dsp_profile_total
#check_await "${DMP_ADN_DSP_PROFILE_TOTAL}/${yes_bef1_slack}/_SUCCESS"
#echo "[table dm_profile_total is ready!]"
check_await "${DSP_PROFILE_TOTAL}/${yes_bef1_slack}/_SUCCESS"
echo "[table dsp_profile_total is ready!]"
#wait for table ods_adn_device_total
check_await "${ADN_TOTAL_PATH}/${yes_bef1_slack}/_SUCCESS"
echo "[table ods_adn_device_total is ready!]"
check_await "${AGE_CALC_DEVICE}/${yes_bef1_slack}/_SUCCESS"
echo "[table dm_device_age is ready!]"
# check_await "${GENDER_CALC_DEVICE}/${yes_bef1_slack}/_SUCCESS"
# check_await "${GENDER_MERGE_DEVICE}/${yes_bef1_slack}/_SUCCESS"
echo "[table dm_device_gender is ready!]"
GET_GENDER_DATE=$(get_recently_date "${GENDER_MERGE_DEVICE}" "${LOG_TIME}" "_SUCCESS")
OUTPUT_PATH="${ODS_DMP_USER_INFO_DAILY}_v2/${yes_bef1_day}"
hadoop fs -test -e ${OUTPUT_PATH}
if [[ $? -ne 0 ]];then
hadoop fs -mkdir -p ${OUTPUT_PATH}
fi
# mount_partition "ods_dmp_user_info_daily" "dt='${yes_bef1_day}'" "${OUTPUT_PATH}"
# check_await ${DMP_EVENT_TAG_DAILY}/day=${yes_bef1_day}/tag_source=3s/_SUCCESS
# check_await ${DMP_EVENT_TAG_DAILY}/day=${yes_bef2_day}/tag_source=ga/_SUCCESS
check_await ${DM_DEVICE_TAG_PATH}/${yes_bef1_slack}/dc/dsp_req/_SUCCESS
check_await ${DM_DEVICE_TAG_PATH}/${yes_bef1_slack}/manual/3s/_SUCCESS
check_await ${DM_DEVICE_TAG_PATH}/${yes_bef1_slack}/manual/adn_install/_SUCCESS
check_await ${DM_DEVICE_TAG_PATH}/${yes_bef1_slack}/manual/adn_request_other/_SUCCESS
check_await ${DM_DEVICE_TAG_PATH}/${yes_bef1_slack}/manual/adn_request_sdk/_SUCCESS
check_await ${DM_DEVICE_TAG_PATH}/${yes_bef1_slack}/manual/adn_sdk/_SUCCESS
check_await ${DM_DEVICE_TAG_PATH}/${yes_bef1_slack}/manual/clever/_SUCCESS
check_await ${DM_DEVICE_TAG_PATH}/${yes_bef1_slack}/manual/dsp_req/_SUCCESS
hadoop fs -rmr ${OUTPUT_PATH}
# --conf spark.memory.offHeap.enabled=true \
# --conf spark.memory.offHeap.size=10737418240 \
# --conf spark.sql.adaptive.enabled=true \
# --conf spark.sql.adaptive.advisoryPartitionSizeInBytes=536870912 \
spark-submit --class mobvista.dmp.datasource.device.OdsDmpUserInfoDailyV3 \
--name "DMP_OdsDmpUserInfoDailyV3_${date}-wangjf" \
--conf spark.network.timeout=720s \
--conf spark.sql.shuffle.partitions=10000 \
--conf spark.default.parallelism=10000 \
--conf spark.yarn.executor.memoryOverhead=2048 \
--conf spark.sql.files.maxPartitionBytes=536870912 \
--conf spark.kryoserializer.buffer.max=512m \
--conf spark.kryoserializer.buffer=64m \
--conf spark.serializer=org.apache.spark.serializer.KryoSerializer \
--conf spark.driver.extraJavaOptions="-XX:+UseG1GC" \
--conf spark.executor.extraJavaOptions="-XX:+UseG1GC" \
--master yarn \
--deploy-mode cluster \
--executor-memory 10G \
--driver-memory 6G \
--executor-cores 4 \
--num-executors 180 \
../${JAR} \
-cur_day ${date} -gender_date ${GET_GENDER_DATE} -output ${OUTPUT_PATH} -coalesce 2000
if [[ $? -ne 0 ]]; then
exit 255
fi
hadoop fs -touchz ${OUTPUT_PATH}/_SUCCESS