1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
package mobvista.dmp.datasource.datatory
import mobvista.dmp.common.CommonSparkJob
import org.apache.commons.cli.{BasicParser, Options}
import org.apache.commons.lang3.StringUtils
import org.apache.hadoop.fs.{FileSystem, Path}
import org.apache.spark.sql.types.{StringType, StructField, StructType}
import org.apache.spark.sql.{Dataset, Row, SaveMode, SparkSession}
import org.apache.spark.storage.StorageLevel
import java.net.URI
/**
* @package: mobvista.dmp.datasource.datatory
* @author: wangjf
* @date: 2019/4/25
* @time: 下午3:19
* @email: jinfeng.wang@mobvista.com
* @phone: 152-1062-7698
*/
class TrackingEventDaily extends CommonSparkJob with java.io.Serializable {
def commandOptions(): Options = {
val options = new Options()
options.addOption("date", true, "date")
options.addOption("before_date", true, "before_date")
options.addOption("output", true, "output")
options.addOption("info_output", true, "info_output")
options
}
override protected def run(args: Array[String]): Int = {
val parser = new BasicParser()
val options = commandOptions()
val commandLine = parser.parse(options, args)
val date = commandLine.getOptionValue("date")
val before_date = commandLine.getOptionValue("before_date")
val output = commandLine.getOptionValue("output")
val info_output = commandLine.getOptionValue("info_output")
val spark = SparkSession
.builder()
.appName("TrackingEventDaily")
.config("spark.rdd.compress", "true")
.config("spark.shuffle.compress", "true")
.config("spark.sql.orc.filterPushdown", "true")
.config("spark.io.compression.codec", "lz4")
.config("spark.io.compression.lz4.blockSize", "64k")
.config("spark.sql.warehouse.dir", "s3://mob-emr-test/spark-warehouse")
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.enableHiveSupport()
.getOrCreate()
val sc = spark.sparkContext
try {
import spark.implicits._
/*
campaingMaps = sc.broadcast(Constant.jdbcConnection(spark, "mob_adn", "campaign_list")
.select("id", "network_cid")
.groupBy("network_cid")
.agg(concat_ws(",", collect_set("id")))
.filter(r => {
StringUtils.isNotBlank(r.getAs("network_cid").toString)
}).rdd.map(r => {
(r.getAs("network_cid").toString, r.getAs("id").toString)
}).collectAsMap())
spark.udf.register("getCampaignIds", getCampaignIds _)
Constant.jdbcConnection(spark, "mob_adn", "campaign_list")
.rdd.map(r => {
(r.getAs("network_cid").toString, r.getAs("id"))
}).saveAsTextFile(output, classOf[GzipCodec])
*/
FileSystem.get(new URI(s"s3://mob-emr-test"), sc.hadoopConfiguration).delete(new Path(output), true)
var sql = Constant.tracking_event_sql.replace("@date", date)
spark.sql(sql)
.filter(r => {
Constant.check_deviceId(r.getAs("device_id"))
})
.write
.mode(SaveMode.Overwrite)
.option("orc.compress", "snappy")
.orc(output)
val campaingDF = Constant.jdbcConnection(spark, "mob_adn", "campaign_list")
.select("id", "network_cid")
.filter(r => {
StringUtils.isNotBlank(r.getAs("network_cid").toString)
}).rdd.map(r => {
Row(r.getAs("network_cid").toString, r.getAs("id").toString)
})
val schema = StructType(Array(
StructField("network_cid", StringType),
StructField("id", StringType)))
spark.createDataFrame(campaingDF, schema = schema).createOrReplaceTempView("campaign_tb")
sql = Constant.event_info_sql.replace("@date", date)
val df_1 = spark.sql(sql)
sql = Constant.tracking_event_info_sql.replace("@date", date)
val df_2 = spark.sql(sql)
val df: Dataset[Row] = df_1.union(df_2)
.dropDuplicates
.rdd
.filter(r => {
r.getAs("offer_id") != null && StringUtils.isNotBlank(r.getAs("offer_id").toString)
})
.map(r => {
EventInfo(r.getAs("id"), r.getAs("event_name"), r.getAs("event_type"), r.getAs("offer_id"))
}).toDF
val oldDF = spark.sql(Constant.all_event_info_sql.replace("@before_date", before_date))
val newDF = oldDF.union(df).dropDuplicates.repartition(1).persist(StorageLevel.MEMORY_ONLY_SER)
newDF
.write
.mode(SaveMode.Overwrite)
.option("orc.compress", "snappy")
.orc(info_output)
Constant.writeMySQL(newDF, "event_info", SaveMode.Overwrite)
} finally {
if (spark != null) {
spark.stop()
}
}
0
}
/*
def getCampaignIds(id: String): String = {
campaingMaps.value.getOrElse(id, "")
}
*/
}
object TrackingEventDaily {
def main(args: Array[String]): Unit = {
new TrackingEventDaily().run(args)
}
}