1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
package mobvista.dmp.datasource.retargeting
import java.net.URL
import com.datastax.spark.connector._
import mobvista.dmp.util.PropertyUtil
import org.apache.commons.cli.{BasicParser, Options}
import org.apache.spark.sql.{Row, SparkSession}
/**
* @package: mobvista.dmp.datasource.retargeting
* @author: wangjf
* @date: 2019/5/23
* @time: 下午4:41
* @email: jinfeng.wang@mobvista.com
* @phone: 152-1062-7698
*/
class RetargetingJob extends Serializable {
def commandOptions(): Options = {
val options = new Options()
options.addOption("region", true, "region")
options
}
private def run(args: Array[String]): Unit = {
val parser = new BasicParser()
val options = commandOptions()
val commandLine = parser.parse(options, args)
val region = commandLine.getOptionValue("region")
val spark = SparkSession
.builder()
.appName("RetargetingJob")
.config("spark.rdd.compress", "true")
.config("spark.io.compression.codec", "lz4")
.config("spark.sql.orc.filterPushdown", "true")
.config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.config("spark.sql.warehouse.dir", "s3://mob-emr-test/spark-warehouse")
.config("spark.cassandra.connection.host", PropertyUtil.getProperty("ip.properties", region + "_host"))
.config("spark.cassandra.connection.port", "9042")
.config("spark.cassandra.connection.factory", s"mobvista.dmp.utils.cassandra.${region.toUpperCase}Factory")
.config("spark.cassandra.connection.connections_per_executor_max", "16")
.config("spark.cassandra.output.concurrent.writes", "2048")
.config("spark.cassandra.concurrent.reads", "2048")
.config("spark.cassandra.output.batch.grouping.buffer.size", "2048")
.config("spark.cassandra.connection.keep_alive_ms", "600000")
.enableHiveSupport()
.getOrCreate()
try {
val mongoDB = spark.read.format("com.mongodb.spark.sql")
.option("uri", "mongodb://internal-beijing-adServerMongo-virginia-1390640500.us-east-1.elb.amazonaws.com/new_adn.campaign_device_id")
.option("collection", "campaign_device_id")
.load()
.rdd.filter(r => {
val deviceIdUrl = r.getAs("deviceIdUrl").toString
!deviceIdUrl.endsWith(".txt")
})
val map = mongoDB.map(r => {
val deviceIdUrl = r.getAs("deviceIdUrl").toString
val campaignId = Integer.parseInt(r.getAs("campaignId").toString)
val url = new URL(deviceIdUrl)
val s3_path = String.format("s3:/%s", new URL(url.openConnection.getHeaderField("location").split("\\?")(0)).getPath)
// val status = r.getAs("status")
(campaignId, (s3_path, 1))
}).collectAsMap()
val sc = spark.sparkContext
var rdd = sc.emptyRDD[(String, Int)]
map.foreach(m => {
if (m._2._2 == 1) {
rdd = rdd.union(sc.textFile(m._2._1).map(r => {
(r, m._1)
}))
} else {
rdd = rdd.union(sc.textFile(m._2._1).map(r => {
(r, 0)
}))
}
})
// import spark.implicits._
val df = rdd.combineByKey(
(v: Int) => Iterable(v),
(c: Iterable[Int], v: Int) => c ++ Seq(v),
(c1: Iterable[Int], c2: Iterable[Int]) => c1 ++ c2
).map(r => {
Row(r._1.toLowerCase, r._2.toSet[Int])
})
// df.createOrReplaceTempView("device_campaign")
// val sql = "SELECT * FROM device_campaign"
df.saveToCassandra("dmp_realtime_service", "dmp_user_features", SomeColumns("device_id", "target_campaign_list" overwrite))
/*
val map = new mutable.HashMap[Int, (String, Int)]()
val jsonArray = GsonUtil.String2JsonArray(json)
jsonArray.foreach(json => {
val jsonObject = json.getAsJsonObject
map.put(jsonObject.get("campaign_id").getAsInt, (jsonObject.get("s3_path").getAsString, jsonObject.get("status").getAsInt))
})
var rdd = sc.emptyRDD[(String, Int)]
map.foreach(m => {
if (m._2._2 == 1) {
rdd = rdd.union(sc.textFile(m._2._1).map(r => {
(r, m._1)
}))
} else {
rdd = rdd.union(sc.textFile(m._2._1).map(r => {
(r, 0)
}))
}
})
// import spark.implicits._
val df = rdd.combineByKey(
(v: Int) => Iterable(v),
(c: Iterable[Int], v: Int) => c ++ Seq(v),
(c1: Iterable[Int], c2: Iterable[Int]) => c1 ++ c2
).map(r => {
DeviceTarget(r._1.toLowerCase, r._2.toSet[Int])
}).repartition(10)
df.saveToCassandra("dmp_realtime_service", "dmp_user_features", SomeColumns("device_id", "target_campaign_list" overwrite))
*/
} finally {
if (spark != null) {
spark.stop()
}
}
}
}
object RetargetingJob {
def main(args: Array[String]): Unit = {
new RetargetingJob().run(args)
}
}