1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
package mobvista.dmp.datasource.fmp
import java.text.SimpleDateFormat
import com.google.gson.{JsonArray, JsonObject}
import mobvista.dmp.datasource.dm.Constant.{allZero, didPtn}
import mobvista.dmp.util.DateUtil
import mobvista.prd.datasource.util.GsonUtil
import org.apache.commons.lang3.StringUtils
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.storage.StorageLevel
import scala.collection.JavaConversions._
/**
* @package: mobvista.dmp.datasource.fmp
* @author: wangjf
* @date: 2019-06-10
* @time: 16:57
* @emial: jinfeng.wang@mobvista.com
* @phone: 152-1062-7698
*/
object Constant {
val sdf1 = new SimpleDateFormat("yyyy-MM-dd")
val sdf2 = new SimpleDateFormat("yyyyMMdd")
def parseJsonStringJob(jsonString: String): JobProfileEntity = {
GsonUtil.fromJson(GsonUtil.String2JsonObject(jsonString), classOf[JobProfileEntity])
}
def parseDimension(json: JsonObject): DimensionEntity = {
GsonUtil.fromJson(json, classOf[DimensionEntity])
}
def getDF(spark: SparkSession, jobProfileEntity: JobProfileEntity): (DataFrame, Int) = {
import spark.implicits._
var user_sql =
"""
|SHOW PARTITIONS dwh.dm_user_info
""".stripMargin
var partDF = spark.sql(user_sql)
var date = partDF.orderBy(partDF("partition").desc).first.getString(0).split("=")(1)
user_sql =
s"""
|SELECT UPPER(device_id) device_id, frequency FROM dwh.dm_user_info WHERE dt = '${date}'
""".stripMargin
if (jobProfileEntity.last_req_day != null) {
val updateDate = DateUtil.getDayByString(date, "yyyyMMdd", -jobProfileEntity.last_req_day)
val update_date = sdf1.format(sdf2.parse(updateDate))
user_sql = user_sql + s" AND update_date >= '${update_date}'"
}
if (StringUtils.isNotBlank(jobProfileEntity.behavior) && GsonUtil.String2JsonArray(jobProfileEntity.behavior).size() > 0) {
var behavior = ""
GsonUtil.String2JsonArray(jobProfileEntity.behavior).foreach(j => {
behavior += "'" + j.getAsString.toLowerCase + "',"
})
behavior = "(" + behavior.substring(0, behavior.length - 1) + ")"
user_sql = user_sql + s" AND LOWER(behavior) IN ${behavior}"
}
var active_sql =
"""
|SHOW PARTITIONS dwh.dm_active_tag
""".stripMargin
partDF = spark.sql(active_sql)
date = partDF.orderBy(partDF("partition").desc).take(2)(1).getString(0).split("/")(0).split("=")(1)
val part = partDF.orderBy(partDF("partition").desc).take(2)(1).getString(0).split("/")(1).split("=")(1)
/*
if (!part.equals("month")) {
date = DateUtil.getDayByString(date, "yyyyMMdd", -1)
}
*/
active_sql =
s"""
|SELECT UPPER(device_id) device_id, tags, part FROM dwh.dm_active_tag WHERE dt = '${date}'
""".stripMargin
if (StringUtils.isNotBlank(jobProfileEntity.country) && GsonUtil.String2JsonArray(jobProfileEntity.country).size() > 0) {
var country = ""
GsonUtil.String2JsonArray(jobProfileEntity.country).foreach(j => {
country += "'" + j.getAsString.toUpperCase + "',"
})
country = "(" + country.substring(0, country.length - 1) + ")"
user_sql = user_sql + s" AND UPPER(country) IN $country"
active_sql = active_sql + s" AND UPPER(country_code) IN $country"
}
if (StringUtils.isNotBlank(jobProfileEntity.platform) && GsonUtil.String2JsonArray(jobProfileEntity.platform).size() > 0) {
var platform = ""
// var platform_ids = ""
GsonUtil.String2JsonArray(jobProfileEntity.platform).foreach(j => {
platform += "'" + j.getAsString.toUpperCase + "',"
// platform_ids += "'" + (if (j.getAsString.toUpperCase.equals("IOS")) "0" else "1") + "',"
})
platform = "(" + platform.substring(0, platform.length - 1) + ")"
// platform_ids = "(" + platform_ids.substring(0, platform_ids.length - 1) + ")"
user_sql = user_sql + s" AND UPPER(platform) IN $platform"
// active_sql = active_sql + s" AND UPPER(platform) IN $platform_ids"
}
if (StringUtils.isNotBlank(jobProfileEntity.package_name) && GsonUtil.String2JsonArray(jobProfileEntity.package_name).size() > 0) {
var package_sql =
"""
|SHOW PARTITIONS dwh.package_mapping
""".stripMargin
partDF = spark.sql(package_sql)
date = partDF.orderBy(partDF("partition").desc).first.getString(0).split("=")(1)
package_sql =
s"""
|SELECT id, package_name FROM dwh.package_mapping WHERE dt = '${date}'
""".stripMargin
val bMap = spark.sparkContext.broadcast(spark.sql(package_sql).rdd.map(r => {
(r.getAs("package_name").toString.toUpperCase, r.getAs("id").toString)
}).collectAsMap())
spark.udf.register("filterByPackage", filterByPackage _)
var package_name = ""
GsonUtil.String2JsonArray(jobProfileEntity.package_name).foreach(j => {
package_name += "" + bMap.value.getOrElse(j.getAsString.toUpperCase, "-1") + ","
})
package_name = package_name.substring(0, package_name.length - 1)
user_sql = user_sql + s" AND filterByPackage(CONCAT_WS(',',install),'${package_name}')"
}
spark.udf.register("check_deviceId", check_deviceId _)
user_sql = user_sql + " AND @check_deviceId"
println("user_sql ==>> " + user_sql)
val user_df = spark.sql(user_sql.replace("@check_deviceId", "check_deviceId(device_id)"))
// .rdd.map(r => {DeviceFrequencyEntity(r.getAs("device_id"), r.getAs("frequency"))})
// .persist(StorageLevel.MEMORY_AND_DISK_SER)
active_sql = active_sql + " AND @check_deviceId"
println("active_sql ==>> " + active_sql)
val active_df = spark.sql(active_sql.replace("@check_deviceId", "check_deviceId(device_id)"))
// .rdd.map(r => {DeviceActiveEntity(r.getAs("device_id"), r.getAs("tags"), r.getAs("part"))})
val df = if (StringUtils.isNotBlank(jobProfileEntity.dimension) && GsonUtil.String2JsonArray(jobProfileEntity.dimension).size() > 0) {
val code_sql: String =
"""
|SELECT new_second_id, tag_id FROM
| dwh.dm_old2new_tag
""".stripMargin
val bMap = spark.sparkContext.broadcast(spark.sql(code_sql).rdd.map(r => {
(r.getAs("new_second_id").toString, r.getAs("tag_id").toString)
}).collectAsMap())
val dimensionEntity = parseDimension(GsonUtil.String2JsonArray(jobProfileEntity.dimension).get(0).getAsJsonArray.get(0).getAsJsonObject)
val part = dimensionEntity.active_dimension.toLowerCase
val tmp_df = active_df.toDF.filter(s"part = '${part}'").select("device_id", "tags")
tmp_df.createOrReplaceTempView("active")
user_df.toDF.createOrReplaceTempView("user")
println("user_df.count ==>> " + user_df.count())
println("tmp_df.count ==>> " + tmp_df.count())
val join_sql =
"""
|SELECT a.device_id device_id, a.frequency frequency, b.tags tags
| FROM user a JOIN active b
| ON a.device_id = b.device_id
""".stripMargin
val join_df = spark.sql(join_sql)
.rdd.map(r => {
DeviceCntCount(r.getAs("device_id"), r.getAs("frequency"), r.getAs("tags"))
}).persist(StorageLevel.MEMORY_ONLY_SER)
println("join_df.count ==>> " + join_df.count())
val rdd = dimensionForeach(join_df, GsonUtil.String2JsonArray(jobProfileEntity.dimension), bMap, spark).dropDuplicates
rdd
} else {
val user_rdd = user_df.map(r => {
r.getAs("device_id").toString
}).toDF
user_rdd.dropDuplicates
}
df.cache
val limit: Int = if (jobProfileEntity.limit != null && jobProfileEntity.limit <= 10000000) {
jobProfileEntity.limit
} else {
10000000
}
(df.limit(limit), df.count.toInt)
}
def check_deviceId(device_id: String): Boolean = {
device_id.matches(didPtn) && !device_id.equals(allZero)
}
// UDF
def filterByPackage(packages: String, pkgs: String): Boolean = {
val set = pkgs.split(",").toSet
var flag = false
val itr = packages.split(",").iterator
// val itr = packages.iterator
while (itr.hasNext && !flag) {
val rs = itr.next
if (set.contains(rs)) {
flag = true
}
}
flag
}
// dimension 一致优化
def dimensionForeach(df: RDD[DeviceCntCount], jsonArray: JsonArray, bMap: Broadcast[scala.collection.Map[String, String]], spark: SparkSession): DataFrame = {
import spark.implicits._
var outer_df = spark.emptyDataFrame
jsonArray.foreach(json => {
var inter_df = spark.emptyDataFrame
json.getAsJsonArray.foreach(j => {
val dimensionEntity = parseDimension(j.getAsJsonObject)
// val interest = bMap.value.getOrElse(dimensionEntity.interest, "0")
val install_cnt = dimensionEntity.install_cnt
val active_count = dimensionEntity.active_count
inter_df = if (inter_df.rdd.isEmpty()) {
parseCnt_Count(df, dimensionEntity.interest, bMap, install_cnt, active_count).toDF
} else {
inter_df.union(parseCnt_Count(df, dimensionEntity.interest, bMap, install_cnt, active_count).toDF)
}
})
outer_df = if (outer_df.rdd.isEmpty()) {
inter_df
} else {
outer_df.intersect(inter_df)
}
})
outer_df
}
// dimension 计算
def dimensionForeach(user_df: RDD[DeviceFrequencyEntity], active_df: RDD[DeviceActiveEntity], jsonArray: JsonArray, bMap: Broadcast[scala.collection.Map[String, String]], spark: SparkSession): DataFrame = {
import spark.implicits._
var outer_df = spark.emptyDataFrame
jsonArray.foreach(json => {
var inter_df = spark.emptyDataFrame
json.getAsJsonArray.foreach(j => {
val dimensionEntity = parseDimension(j.getAsJsonObject)
val interest = bMap.value.getOrElse(dimensionEntity.interest, "0")
val install_cnt = dimensionEntity.install_cnt
val active_count = dimensionEntity.active_count
val active_dimension = dimensionEntity.active_dimension
inter_df = if (inter_df.rdd.isEmpty()) {
parseInterestCnt(user_df, interest, install_cnt).toDF.intersect(parseInterestActive(active_df, dimensionEntity.interest, active_count, active_dimension).toDF)
} else {
inter_df.union(parseInterestCnt(user_df, interest, install_cnt).toDF.intersect(parseInterestActive(active_df, dimensionEntity.interest, active_count, active_dimension).toDF))
}
})
outer_df = if (outer_df.rdd.isEmpty()) {
inter_df
} else {
outer_df.intersect(inter_df)
}
})
outer_df
}
// install_cnt 安装频度
def parseCnt_Count(df: RDD[DeviceCntCount], interest: String, bMap: Broadcast[scala.collection.Map[String, String]], install_cnt: String, active_count: String): RDD[String] = {
val cnter =
if (install_cnt.split("-").size == 2) {
(Integer.parseInt(install_cnt.split("-")(0)), Integer.parseInt(install_cnt.split("-")(1)))
} else {
(Integer.parseInt(install_cnt.split("-")(0)), -1)
}
val active_cnter =
if (active_count.split("-").size == 2) {
(Integer.parseInt(active_count.split("-")(0)), Integer.parseInt(active_count.split("-")(1)))
} else {
(Integer.parseInt(active_count.split("-")(0)), -1)
}
// val query_tag = bMap.value.getOrElse(interest, "0")
val result = df.filter(d => {
var freq_flag = false
if (d.frequency != null) {
for (i <- d.frequency.indices if !freq_flag) {
val tag = d.frequency.get(i).asInstanceOf[GenericRowWithSchema].getAs("tag").toString
val cnt = Integer.parseInt(d.frequency.get(i).asInstanceOf[GenericRowWithSchema].getAs("cnt").toString)
freq_flag = tag.equals(interest) && (if (cnter._2 == -1) cnt >= cnter._1 else cnt >= cnter._1 && cnt <= cnter._2)
}
}
var active_flag = false
val tags = GsonUtil.String2JsonArray(d.tags)
for (tag <- tags if !active_flag) {
val active = GsonUtil.fromJson(tag.getAsJsonObject, classOf[ActiveTagEntity])
val tag_id = active.tag_id
val cnt = active.cnt
active_flag = tag_id.equals(interest) && (if (active_cnter._2 == -1) cnt >= active_cnter._1 else cnt >= active_cnter._1 && cnt <= active_cnter._2)
}
freq_flag && active_flag
}).map(r => {
r.deviceId
})
result
}
// install_cnt 安装频度
def parseInterestCnt(df: RDD[DeviceFrequencyEntity], interest: String, install_cnt: String): RDD[String] = {
val cnter =
if (install_cnt.split("-").size == 2) {
(Integer.parseInt(install_cnt.split("-")(0)), Integer.parseInt(install_cnt.split("-")(1)))
} else {
(Integer.parseInt(install_cnt.split("-")(0)), -1)
}
val result = df.filter(d => {
var flag = false
if (d.frequency != null) {
for (i <- d.frequency.indices if !flag) {
val tag = d.frequency.get(i).asInstanceOf[GenericRowWithSchema].getAs("tag").toString
val cnt = Integer.parseInt(d.frequency.get(i).asInstanceOf[GenericRowWithSchema].getAs("cnt").toString)
flag = tag.equals(interest) && (if (cnter._2 == -1) cnt >= cnter._1 else cnt >= cnter._1 && cnt <= cnter._2)
}
}
flag
}).map(r => {
r.device_id
})
result
}
// active_count 活跃天数
def parseInterestActive(df: RDD[DeviceActiveEntity], interest: String, active_count: String, active_dimension: String): RDD[String] = {
val cnter =
if (active_count.split("-").size == 2) {
(Integer.parseInt(active_count.split("-")(0)), Integer.parseInt(active_count.split("-")(1)))
} else {
(Integer.parseInt(active_count.split("-")(0)), -1)
}
val result = df.filter(d => {
d.part.equals(active_dimension)
}).filter(d => {
var flag = false
val tags = GsonUtil.String2JsonArray(d.tags)
val part = d.part
for (tag <- tags if !flag) {
val active = GsonUtil.fromJson(tag.getAsJsonObject, classOf[ActiveTagEntity])
val tag_id = active.tag_id
val cnt = active.cnt
flag = tag_id.equals(interest) && (if (cnter._2 == -1) cnt >= cnter._1 else cnt >= cnter._1 && cnt <= cnter._2)
}
flag
}).map(r => {
r.device_id
})
result
}
}